Matrix Completion

Franz J. Király12, Louis Theran2, Ryota Tomioka3

1 Machine Learning Group
Technische Universität Berlin

2 Discrete Geometry Group
Freie Universität Berlin

3 Department of Mathematical Informatics
The University of Tokyo
In this talk:

Combinatorial Algebraic Methods

for understanding

Matrix Completion

yielding

Identifiability Criteria and Competitive Algorithms
What is Matrix Completion?

Generative model:
- low rank matrix A (unknown)
- entries are random values

Matrix completion
- **Input:** some entries of A plus noise
 - rank of A
- **Output:** A

$$
\begin{pmatrix}
1 & 2 & 3 \\
3 & 6 & 9 \\
2 & 4 & 6
\end{pmatrix}
$$
Matrix Completion

Definition: masking

\[
\Omega : \mathbb{C}^{m \times n} \rightarrow \mathbb{C}^{\alpha}
\]

\[
\begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 \cdot & a_{i_1j_1} & \cdot & \cdot \\
 \cdot & \cdot & a_{i_2j_2} & \cdot \\
 \cdot & a_{i_\alpha j_\alpha} & \cdot & \cdot \\
 \cdot & \cdot & \cdot & \cdot
\end{pmatrix}
\]

\[
E(\Omega) = \{(i_k, j_k) ; 1 \leq k \leq \alpha\} \quad \#E(\Omega) = \alpha
\]

Question: Given a masking \(\Omega \) and \(A \in \mathbb{C}^{m \times n} \) of rank \(r \), when can \(A \) be uniquely reconstructed from \(\Omega(A) \)?
Matrix Completion

Question: Given a masking Ω and $A \in \mathbb{C}^{m \times n}$ of rank r, when can A be uniquely reconstructed from $\Omega(A)$?

Definition: $\mathcal{M} = \{ A \in \mathbb{C}^{m \times n} ; \text{rk} A \leq r \}$

Note: \mathcal{M} is an algebraic variety, so-called determinantal variety because \mathcal{M} is the solution set of all $(r+1) \times (r+1)$ minor equations $\det \ldots = 0$

Sub-question: When is $\Omega : \mathcal{M} \to \mathbb{C}^\alpha$ injective?
Matrix Completion

Sub-question: When is $\Omega : \mathcal{M} \to \mathbb{C}^\alpha$ injective?

$\mathcal{M} =$ set of matrices of rank $\leq r$

Example: $m = n = 2, r = 1$

$\Omega : \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \mapsto \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$

$a_{22} = \frac{a_{12}a_{21}}{a_{11}}$ undefined if $a_{11} = 0$

General answer: Only if $\#E(\Omega) = mn$.

Proof: Assume $\#E(\Omega) < mn$.
Take some non-zero matrix A such that $\Omega(A) = 0$.
Then, $\lambda A \in \Omega^{-1}(\Omega(A))$ for all $\lambda \in \mathbb{C}$.
The right question to ask

Bad question: When is $\Omega : \mathcal{M} \to \mathbb{C}^\alpha$ injective?

Answer: Only if $\# E(\Omega) = mn$.

But what if we allow a zero set of exceptions?

Definition: Ω is called **generically injective** or **identifiable** if Ω is injective when restricted to almost all matrices

i.e. the fiber $\Omega^{-1}(\Omega(A)) = \{A\}$ for $A \in U$, with U dense in \mathcal{M}

($= \mathcal{M} \setminus U$ has zero measure)

Definition: Ω is called **generically finite** if Ω is n-to-one when restricted to almost all matrices
Parameterizing the masking

Better question: When is $\Omega : \mathcal{M} \to \mathbb{C}^\alpha$ generically injective?

Definition: mask of

$$
\Omega : \begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix} \rightarrow \begin{pmatrix}
 \cdot & a_{i_1 j_1} & \cdot & \cdot \\
 \cdot & \cdot & a_{i_2 j_2} & \cdot \\
 \cdot & a_{i_{\alpha_1} j_{\alpha}} & \cdot & \cdot
\end{pmatrix}
$$

is matrix $M(\Omega) \in \{0, 1\}^{m \times n}$

such that $\Omega : A \mapsto M(\Omega) \circ A$

e.g. $M(\Omega) = \begin{pmatrix}
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & \vdots & \vdots & 0 \\
 0 & 1 & 0 & 0
\end{pmatrix}$
When can almost all matrices be reconstructed?

Theorem:
For a generic matrix A, the dimension, and cardinality of the fiber $\Omega^{-1}(\Omega(A))$ (=the set of possible reconstructions) depends only on m, n, r and the mask $M(\Omega)$. Moreover, that dimension is minimal for generic A.

Corollary:
Whether Ω is generically injective depends only on m, n, r and the mask $M(\Omega)$.

(generic low-rank)

reconstructability of a matrix depends only on mask! (= set of known entries)

with probability one, i.e., pathologies occur almost never
Intermezzo: Dimension

Let X be an algebraic variety. (= e.g., subset of \mathbb{C}^n defined by polynomial equations)

Let P be a point on X.

$\dim_P X =$ degrees of freedom to move P on X

$= \text{dimension of tangent space of } X \text{ at } P$

$\dim X = \dim_P X$ for generic/almost all P

(if ambiguous, take max)
The upper semicontinuity theorem

Upper semicontinuity theorem (Chevalley, Grothendieck): Let \mathcal{M} be a variety, let $\mathcal{M} \to X$ be an algebraic map which is locally of finite type. Then, the map $A \mapsto \dim_A \Omega^{-1}(\Omega(A))$ is upper semicontinuous w.r.t. the Zariski topology.

Intuitively: Any randomly chosen A has the same fiber dimension. Restricting the set from which you choose A randomly by algebraic constraints can make the fiber dimension only bigger or equal.
When can almost all matrices be reconstructed?

Theorem:
For a generic matrix A, the dimension, and cardinality of the fiber $\Omega^{-1}(\Omega(A))$ (=the set of possible reconstructions) depends only on m, n, r and the mask $M(\Omega)$. Moreover, that dimension is minimal for generic A.

Corollary:
Whether Ω is generically injective depends only on m, n, r and the mask $M(\Omega)$.

Proof: $\Omega : \mathcal{M} \rightarrow \mathbb{C}^\alpha$ is algebraic.
\mathcal{M} is irreducible.
Apply upper semicontinuity.
Bad and good masks

Two possibilities:

mask is identifiable

\[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}
\]

ea consistent estimator for true matrix exists:

Approximate Algebra

mask is not identifiable

\[
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]

no algorithm can identify true matrix

(except, by chance)

(i.e., “prophetic” choice of prior)
Which masks are identifiable?

Theorem:
\(\Omega \) is generically finite only if \(\#E(\Omega) \geq r(m + n - r) \)

Proof: \(\Omega : \mathcal{M} \rightarrow \mathbb{C}^\alpha \) is algebraic

\[
\dim \Omega^{-1}(\Omega(A)) = \dim \mathcal{M} - \dim \Omega(\mathcal{M})
\]

for generic \(A \) (generic fiber theorem)

\[
\dim \Omega(\mathcal{M}) \leq \#E(\Omega) \quad \dim \mathcal{M} = r(m + n - r)
\]

Thus \(\dim \Omega^{-1}(\Omega(A)) \geq r(m + n - r) - \#E(\Omega) \)

\(\Omega \) is generically finite if and only if \(\dim \Omega^{-1}(\Omega(A)) = 0 \).
Which masks are identifiable?

Theorem:
\[\Omega \text{ is generically finite only if } \#E(\Omega) \geq r(m + n - r) \]

This bound is not strict!

Example: \(m = n = 3, r = 1 \)

- Identifiable:
 \[
 \begin{pmatrix}
 1 & 0 & 1 \\
 1 & 1 & 0 \\
 1 & 0 & 0 \\
 \end{pmatrix}
 \quad \begin{pmatrix}
 1 & 1 & 0 \\
 1 & 0 & 1 \\
 1 & 1 & 0 \\
 \end{pmatrix}
 \]

- Not identifiable:
 \[
 \begin{pmatrix}
 1 & 0 & 1 \\
 0 & 1 & 0 \\
 1 & 0 & 1 \\
 \end{pmatrix}
 \quad \begin{pmatrix}
 1 & 1 & 0 \\
 1 & 1 & 0 \\
 1 & 1 & 0 \\
 \end{pmatrix}
 \]
Necessary conditions

\[
\begin{pmatrix}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 0
\end{pmatrix}
\]

\[\Rightarrow\text{Additional information on } \Omega \text{ is needed}\]

Definition:
mask defines bipartite graph \(G(\Omega) \)

\[
\begin{pmatrix}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{pmatrix}
\]

columns
rows

By **Theorem**, all information is encoded in \(G(\Omega) \)
Necessary conditions

Definition:
A graph is \(r\)-(edge)-connected if, after removing arbitrary \(r - 1\) edges, the graph is still connected.

Theorem:
\(\Omega\) is generically finite only if \(G(\Omega)\) is \(r\)-connected.

Sketch of proof:
If \(G(\Omega)\) is not \(r\)-connected, then
\[
M(\Omega) = \begin{pmatrix} M_1 & 0 \\ 0 & M_2 \end{pmatrix} + M' > r - (r - 1) \text{ degrees of freedom}
\]

\[
\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} < r \text{ non-zero entries}
\]

\[
\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}
\]
Sufficient conditions

Theorem:
\(\Omega \) is generically injective if \(G(\Omega) \) is \(r \)-closable.

Intuitive Algebraic Definition:
\[
\begin{pmatrix}
\times & \times & \times \\
\times & \times & \times \\
\times & \times & \times \\
\end{pmatrix}
\]
solve \(\det A = 0 \) for \(a_{33} \)

Semi-formal Graph-Theoretic Definition:
Let \(K_{r+1,r+1}^- \) be the complete bipartite graph minus one edge.
\(r \)-closure of a graph is obtained by repeatedly replacing the induced structure of \(K_{r+1,r+1}^- \) with \(K_{r+1,r+1} \) inside the graph.

If the \(r \)-closure of \(G(\Omega) \) is \(K_{m,n} \) then \(G(\Omega) \) is called \(r \)-closable.
Sufficient conditions

Theorem:
For $r = 1$ and $r = m - 1$, r-connectedness = r-closability
but not in general!

Proof:
$r = 1$
1-closable = connected = 1-connected

$r = m - 1$
gen.injective = at most 1 entry per column missing
⇒ $(m - 1)$-closable

$r = 2$

\[
\begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}
\]
is a counterexample
i.e., finitely completable but not 2-closable
Matroidal Property

Theorem:
For every r, there exists a minimal family of “forbidden subgraphs"

$$\mathcal{C}_r = \{ G_1^{(r)}, G_2^{(r)}, \ldots, \}$$

s.t. Ω with $E(\Omega) = r(m + n - r)$ is generically finite if and only if $G(\Omega)$ contains no graph in \mathcal{C}_r

Moreover, each $G_i^{(r)}$ is $(r + 1)$-connected

(implies degrees $\geq r + 1$)

Example:

$$\mathcal{C}_1 = \{ \text{cycles of even length} \}$$

$= \{ \begin{array}{c} \begin{array}{c} \text{cycles of even length} \\ \end{array} \\ \end{array} \}$

$$K_{r+1,r+1} \in \mathcal{C}_r$$
Asymptotics and Probabilistics

Central question:
Take a random mask $M(\Omega) \in \{0, 1\}^{m \times n}$ where we uniformly, randomly allocate k ones and $mn - k$ zeros. (= random observations in a low-rank model)

How probable is it for Ω to be generically identifiable/finite?

Previous results: (symmetric case $m = n$)

w.h.p, Ω is generically finite if

$k = O(n \log n)$ for incoherent input matrices

(Keshavan, Oh, Montanari, 2009) (Candès, Tao, 2009)

$k = O(n \log n)$ for generic matrices, estimated by numerics

(Singer, Cucuringu, 2009)

w.h.p, Ω is generically identifiable if

$k = O(n \log^2 n)$ for incoherent input matrices

(Candès, Tao, 2009)
Central question:
Take a random mask \(M(\Omega) \in \{0, 1\}^{m \times n} \) where we uniformly, randomly allocate \(k \) ones and \(mn - k \) zeros. (= random observations in a low-rank model)

How probable is it for \(\Omega \) to be generically identifiable/finite?

Theorem: (square case \(m = n \))

Exact threshold for \(\Omega \) being generically finite is

\[
 k = \Theta(n \log n)
\]

without conditioning on input matrix!

Proof: upper bounds and necessity of connectedness incoherence assumption can be removed
Phase transition is due to a shift in combinatorial properties of graph!

w.h.p., $G(\Omega)$ is connected, 2-connected, 3-connected, identifiable, 3-closable.
Approximate Algebra for Matrix Completion

How to use Algebra in noisy estimation?

Approximate Algebra provides tools to cope with noise.

Sketch of algorithm: (rank 1 example)

1. Find equations of form $a_{k\ell} = \frac{a_{i\ell}a_{kj}}{a_{ij}} = f(\text{known entries})$

2. \[
\begin{pmatrix}
 a_{ij} & \cdots & a_{kj} \\
 \vdots & \ddots & \vdots \\
 a_{i\ell} & \cdots & a_{k\ell}
\end{pmatrix}
\quad \text{approximately} \quad
\begin{pmatrix}
 a_{ij} & \cdots & a_{kj} \\
 \vdots & \ddots & \vdots \\
 a_{i\ell} & \cdots & a_{k\ell}
\end{pmatrix}
\]
Approximate Combinatorial Algebra yields competitive Matrix Completion method
Summary and Outlook

Combinatorial Algebra is a Conceptually New Approach to Matrix Completion which makes it approachable by Tools from:

- Classic and Combinatorial Algebraic Geometry
- Combinatorial and Probabilistic Graph Theory

The New Method yields Novel Theoretical Insights:

- Identifiability of the True Matrix depends only on Mask
- Combinatorial Conditions for Generic Identifiability
- Probabilistic Graph Theory explains the Asymptotics

The New Method allows Novel and Competitive Algorithms:

- Consistent and Accurate Estimator for Completion
- Polynomial Time Algorithm to determine Completability
Open Questions

Finitely Completable Masks
How to characterize the finitely completable masks for rank>1?

Relation to Optimization
How do the results on Trace Norm and SDP relate to this?

Sub-Completability
How to find and complete large completable sub-masks?
So: why Algebra?

Matrix Completion

is in its heart an estimation task with

Algebraic Combinatorial structure

which any useful method has to rely upon